a^2+a^2=4R^2

Simple and best practice solution for a^2+a^2=4R^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for a^2+a^2=4R^2 equation:



a^2+a^2=4^2
We move all terms to the left:
a^2+a^2-(4^2)=0
We add all the numbers together, and all the variables
2a^2-16=0
a = 2; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·2·(-16)
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{2}}{2*2}=\frac{0-8\sqrt{2}}{4} =-\frac{8\sqrt{2}}{4} =-2\sqrt{2} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{2}}{2*2}=\frac{0+8\sqrt{2}}{4} =\frac{8\sqrt{2}}{4} =2\sqrt{2} $

See similar equations:

| 8=2-3b | | 6^x+2=-29 | | 1+5p-9=5p-8 | | -(2x-4)+3(x-)=2(x-1)-(x-3) | | 3x+x+2=x+2-10 | | i5+-2=11 | | 2=1.095^n | | -2(x+2)-x=-x-4(x+2) | | x+50+3x-6=180 | | 1/5x+1/2=1/2x+7/10 | | 7=6-c/3 | | 3(2x-15)=0.5(12x+18) | | 8/10x-3=3/10x+7 | | -7(2+2x)=-7(x-7) | | x+x-58=180 | | 33-19=2(x-9) | | 4n=17=42 | | 8y-3=5y+7 | | 7-3=-3y-43 | | 26-2y=4 | | 18-3y=20 | | -(8+7x)=-2(-3+3x)+6x | | X+(1/2x)+(1/2x)(3)=15 | | 24z−23z=−15+14 | | 6-x3/4=4 | | 6d-24+d=19+15d-6 | | -(2h+18)=7h | | X+(1/2x)+1/2x(3)=15 | | 2=x-11/x-3 | | 3(4+2n)=2n-16 | | -(2h+18)=17 | | 3x+5=-19x= |

Equations solver categories